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The Green’s function method is a powerful method for solving nonhomogeneous linear equations Ly(x) =
f(x). The Green’s function G(x, a) satisfies the equation

LG(x, a) = δ(x− a),

where δ denotes the Dirac delta function.

Learning objectives

• Delta functions, Heaviside functions

• Use of Green’s functions for solving nonhomogeneous equations

• Green’s functions vs. variation of parameters

1 Dirac Delta Function and Heaviside Function
Definition. {

δ(x− a) = 0 if x 6= a´ +∞
−∞ δ(x− a)dx = 1

Alternatively,
δ(x− a) = lim

ε→0+
Fε(x),

where

Fε(x) =


0 x < a− 1

2ε

1/ε a− 1
2ε ≤ x ≤ a+ 1

2ε

0 x > a+ 1
2ε.

Note that area of Fε(x) is always 1. The delta function can also be defined as

δ(x− a) = lim
ε→0+

ε

π[(x− a)2 + ε2]
;

δ(x− a) = lim
ε→0+

e−(x−a)2/ε

√
πε

δ(x− a) = lim
L→+∞

1
2π

ˆ L

−L

ei(x−a)tdt.

Alternatively, δ(x− a) can be defined as the derivative of the Heaviside function H(x− a),

H(x− a) =


0 x < a

1/2 x = a

1 x > a

.

∗Based on Section 1.5 of textbook “Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and
Perturbation Theory” by Carl M. Bender and Steven A. Orszag. Springer, 1999.
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Then
δ(x− a) =

d

dx
H(x− a).

Note that Heaviside is “smoother” than the Dirac delta function, as integration is a smoothing operation.
Furthermore, the integral of the Heaviside function is a ramp function

R(x− a) =
ˆ x

−∞
H(t− a)dt =

{
0 x ≤ a
x− a x > a

.

The most important property of Dirac delta function we need is that

ˆ ∞
−∞

δ(x− a)f(x)dx =
ˆ ∞
−∞

δ(x− a)f(a)dx

= f(a)
ˆ ∞
−∞

δ(x− a)dx

= f(a).

2 Application to Differential Equations
The Green’s function G(x, a) associated with the nonhomogeneous equation Ly = f(x) satisfies the differ-
ential equation

LG(x, a) = δ(x− a).

Once G(x, a) is known, then the solution to Ly = f(x) is

y(x) =
ˆ ∞
−∞

f(a)G(x, a)da,

because

Ly(x) = L

ˆ ∞
−∞

f(a)G(x, a)da

=
ˆ ∞
−∞

f(a) (LG(x, a)) da

=
ˆ ∞
−∞

f(a)δ(x− a)da

=
ˆ ∞
−∞

f(x)δ(a− x)da

= f(x)
ˆ ∞
−∞

δ(a− x)da

= f(x).

In the second equality, the L-operator and the integration can be interchanged because they are on two
different variables. Also note that it is in effect also true for

y(x) =
ˆ

I

f(a)G(x, a)da,

over any interval I that contains x on which f(x) is continuous, instead of just over (−∞,∞).
The question now is how to solve the Green’s function problem. It is easy to solve if the solutions of the

homogeneous system Ly(x) = 0 are known. We illustrate with the 2nd order equation with

L =
d2

dx2
+ p1(x)

d

dx
+ p0(x).
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LG(x, a) =
[
d2

dx2
+ p1(x)

d

dx
+ p0(x)

]
G(x, a) = δ(x− a).

Assume c1y1 + c2y2 is the general solution of Ly = 0. When x 6= a, the RHS vanishes, so

G(x, a) = A1y1(x) +A2y2(x), x < a

G(x, a) = B1y1(x) +B2y2(x), x > a.

There are two extra conditions:

1. G(x, a) is continuous at x = a.

2. ∂G/∂x has a finite jump discontinuity of magnitude 1 at x = a.

To prove condition 1, note that if G(x, a) is discontinuous, then LG(x) would be even more singular than
the δ function.

For condition 2, first ∂G/∂x must have a finite jump due to condition 1. From LG(x, a) = δ(x− a), we
see that

∂2G/∂x2 − δ(x− a)

has a finite jump, and its integral
ˆ
∂2G/∂x2-δ(x-a)dx = ∂G/∂x−H(x, a)

must be continuous everywhere, so ∂G/∂x has the same jump of 1 as H(x, a) at a, i.e.

lim
ε→0+

[
∂G

∂x

∣∣∣∣
x=a+ε

− ∂G

∂x

∣∣∣∣
x=a−ε

]
= 1.

We can further verify it as follows. Let
´ a+0

a−0
≡ limε→0

´ a+ε

a−ε
.

ˆ +∞

−∞
LG(x, a) =

ˆ a+0

a−0

d2

dx2
G(x, a)dx+

ˆ a+0

a−0

p1(x)
d

dx
G(x, a)dx︸ ︷︷ ︸´ a+0

a−0 p1H(x−a)dx=0

+
ˆ a+0

a−0

p0(x)G(x, a)dx︸ ︷︷ ︸
0

=
ˆ a+0

a−0

dH(x− a)
dx

dx

=
ˆ a+0

a−0

δ(x− a)dx.

The continuity of G(x, a) at x = a gives the condition

A1y1(a) +A2y2(a) = B1y1(a) +B2y2(a)

and the jump of ∂G(x, a)/∂x gives the equation

B1y
′
1(a) +B2y

′
2(a)−A1y

′
1(a)−A2y

′
2(a) = 1.

Using these equations, we obtain

B1 −A1 = − y2(a)
W [y1(a), y2(a)]

,

B2 −A2 =
y1(a)

W [y1(a), y2(a)]
.

We have two equations for four constants. LG = δ(x − a) has no unique because G + yc is also a solution,
and therefore there are two free parameters. These parameters may be determined by initial conditions or
boundary conditions.
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Here for simplicity, we can just assume A1 = A2 = 0, then

G(x, a) =

{
0 x < a
−y2(a)y1(x)+y1(a)y2(x)

W [y1(a),y2(a)] x ≥ a.

The solution to Ly = f is then

y(x) =
ˆ ∞
−∞

f(a)G(x, a)da

= −y1(x)
ˆ x

−∞

f(a)y2(a)
W [y1(a), y2(a)]

da+ y2(x)
ˆ x

−∞

f(a)y1(a)
W [y1(a), y2(a)]

da

This is identical to the solution obtained using variation of parameters.
Note that the choice of A1 = A2 = 0 was arbitrary. We could have chosen B1 = B2 = 0, and then obtain

G(x, a) =

{
y2(a)y1(x)−y1(a)y2(x)

W [y1(a),y2(a)] x < a

0 x ≥ a

and

y(x) =
ˆ ∞
−∞

f(a)G(x, a)da

= y1(x)
ˆ ∞

x

f(a)y2(a)
W [y1(a), y2(a)]

da− y2(x)
ˆ ∞

x

f(a)y1(a)
W [y1(a), y2(a)]

da.

In addition, the limits (−∞,∞) of the integral can be replaced by other nonempty interval I, and the
resulting y(x) would still be a particular solution of the nonhomogeneous equation.

Advantages of Green’s Function Approach The Green’s function approach is particularly better to
solve boundary-value problems, especially when L and the boundary conditions are fixed but the RHS
may vary. It is easy for solving boundary value problem with homogeneous boundary conditions. For
nonhomogeneous boundary conditions for which the BVP has solutions, some transformations of the variable
are needed to homogenize the boundary conditions.

Example 1 Consider the boundary value problem

y′′ = f(x), with y(0) = 0 and y′(1) = 0.

The Green’s function problem is

∂2

∂x2
G(x, a) = δ(x− a)

G(0, a) = 0
∂

∂x
G(1, a) = 0,

for which, the solution is

y(x) =
ˆ 1

0

G(x, a)f(a)da,

since

y(0) =
ˆ 1

0

G(0, a)f(a)da =
ˆ 1

0

0f(a)da = 0

y′(1) =
ˆ 1

0

∂

∂x
G(1, a)f(a)da =

ˆ 1

0

0f(a)da = 0.
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If x 6= a, d2

dx2G = 0, so

G =

{
A1x+A2 if x < a

B1x+B2 if x > a
,

where a ∈ (0, 1). Note that

G(0, a) = 0 ⇒ A2 = 0⇒ G(x, a) = A1x for x < a

G′(0, a) = 0 ⇒ B1 = 0⇒ G(x, a) = B2 for x > a.

From the continuity of G and the jump of ∂G/∂x at x = a, we have

A1a = B2

0−A1 = 1.

Therefore, A1 = −1 and B2 = −a, and

G(x, a) =

{
−x if x < a

−a if x ≥ a
.

The solution is y(x) =
´ 1

0
G(x, a)f(a)da. Suppose f(x) = x2. Then

y(x) =
ˆ x

0

(−a) a2da+
ˆ 1

x

(−x)a2da

= −a
4

4

∣∣∣∣x
0

− x a3

3

∣∣∣∣1
x

= −x
4

4
− 1

3
x+

x4

3

=
x4

12
− x

3
.

Example 2 Consider the BVP
y′′ − y = f(x), y(±∞) = 0.

The Green’s function problem is

∂2

∂x2
G(x, a)−G(x, a) = δ(x− a)

G(−∞, a) = 0
G(∞, a) = 0,

for which, the solution is

y(x) =
ˆ ∞
−∞

G(x, a)f(a)da,

since

y(−∞) =
ˆ ∞
−∞

G(−∞, a)f(a)da = 0

y(∞) =
ˆ ∞
−∞

G(∞, a)f(a)da = 0.

The homogeneous equation has solutions y1 = e−x and y2 = ex. Therefore,

G(x, a) =

{
A1e

−x +A2e
x if x < a

B1e
−x +B2e

x if x > a
.
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From the boundary conditions, we have A1 = 0 and B2 = 0.
The continuity and the jump discontinuity of derivatives at x = a give

A2e
a = B1e

−a

−B1e
−a = A2e

a + 1.

Solve the linear system, we obtain

B1 = −1
2
ea, A2 = −1

2
e−a

and

G(x, a) =

{
− 1

2e
x−a if x < a

− 1
2e

a−x if x > a
= −1

2
e−|x−a|.

Therefore,

y(x) =
1
2

ˆ +∞

−∞
e−|x−a|f(a)da.
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